Monitoring enzymatic degradation of pericellular matrices through SERS stamping.

نویسندگان

  • Bo Yan
  • Yan Hong
  • Tianhong Chen
  • Björn M Reinhard
چکیده

We introduce a surface enhanced Raman spectroscopy (SERS) stamping approach for acquiring cell-surface specific vibrational spectra of individual living cells under physiological conditions. The SERS stamping approach utilizes a nanostructured metal surface on top of a lithographically defined piston that can be translated in 3-dimensions with nanometer resolution to contact living cells in solution with a pristine metal surface. We applied this approach to characterize the chemical composition of the cellular surface of living MCF7 breast cancer cells and to monitor its change upon addition of the enzyme hyaluronidase, which degrades major constituents of the pericellular matrix. Although the cell surface spectra show significant cell-to-cell fluctuations, a statistical barcode analysis of the spectra ensembles reveals systematic changes in the cell surface SERS spectra upon addition of hyaluronidase, which are consistent with a thinning of the pericellular matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stamping surface-enhanced Raman spectroscopy for label-free, multiplexed, molecular sensing and imaging.

We report stamping surface-enhanced Raman spectroscopy (S-SERS) for label-free, multiplexed, molecular sensing and large-area, high-resolution molecular imaging on a flexible, nonplasmonic surface without solution-phase molecule transfer. In this technique, a polydimethylsiloxane (PDMS) thin film and nanoporous gold disk SERS substrate play the roles as molecule carrier and Raman signal enhance...

متن کامل

Degradation of connective tissue matrices by macrophages. III. Morphological and biochemical studies on extracellular, pericellular, and intracellular events in matrix proteolysis by macrophages in culture

We have shown that macrophages in culture degrade the glycoproteins and amorphous elastin of insoluble extracellular matrices. Ultrastructural observation of the macrophage-matrix interaction revealed that connective tissue macromolecules were solubilized from the matrix extracellularly. At least part of the matrix breakdown was localized to the immediate vicinity of the cells, as shown by morp...

متن کامل

Potential of Surface Enhanced Raman Spectroscopy (SERS) in Therapeutic Drug Monitoring (TDM). A Critical Review

Surface-Enhanced Raman Spectroscopy (SERS) is a label-free technique that enables quick monitoring of substances at low concentrations in biological matrices. These advantages make it an attractive tool for the development of point-of-care tests suitable for Therapeutic Drug Monitoring (TDM) of drugs with a narrow therapeutic window, such as chemotherapeutic drugs, immunosuppressants, and vario...

متن کامل

Catalytic degradation of dye molecules and in situ SERS monitoring by peroxidase-like Au/CuS composite.

In this paper, Au/CuS composites were fabricated by a two-step method based on a facile solvothermal approach combined with the in situ reduction. It was demonstrated that the Au/CuS composite not only exhibited excellent peroxidase-like catalytic activity in the oxidation of the typical peroxidases (o-phenylenediamine and diaminobenzidine), but also showed promising SERS performance with remar...

متن کامل

Assembly of a chondrocyte-like pericellular matrix on non-chondrogenic cells. Role of the cell surface hyaluronan receptors in the assembly of a pericellular matrix.

In this study, we have examined the capacity of various cell types, which express cell surface hyaluronan receptors, to organize a chondrocyte-like pericellular matrix when given chondrocyte-derived extracellular matrix macromolecules exogenously. The assembly of a pericellular matrix was visualized by a particle exclusion assay. Without the addition of exogenous macromolecular components, none...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 4 13  شماره 

صفحات  -

تاریخ انتشار 2012